By Topic

A Refractive INdex Gradient (RING) diagnostic for transient discharges or expansions of vapor or plasmas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cuneo, M.E. ; Sandia Nat Labs., Albuquerque, NM, USA ; Lockner, Thomas R. ; Tisone, Gary C.

The refractive index gradient (RING) diagnostic described uses a fast, silicon, photodiode quadrant detector with a differential amplifier to temporally detect the refraction of a CW laser by transient discharges or expansions of vapor, gas, or plasma. The method is a local one-dimensional time-resolved, quantitative, species-discriminating (i.e., atoms or electrons) Schlieren technique. The diagnostic is easy to field, sensitive (the minimum deflection angles detectable are ≈0.3 μrad), and fast (risetime=11±1 ns). Circuit design, performance, and diagnostic theory are discussed. To illustrate the utility of this technique, examples of measurements on LEVIS (laser evaporation ion source), a laser-produced, active, lithium ion source, are given. Measured properties include vapor/plasma production thresholds, expansion velocities, and time-resolved gradient and density spatial profiles. Comparisons of the RING results with measurements using a Faraday cup and a double-floating Langmuir probe are presented

Published in:

Plasma Science, IEEE Transactions on  (Volume:19 ,  Issue: 5 )