By Topic

Vacuum arc ion charge-state distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. G. Brown ; Lawrence Berkeley Lab., California Univ., Berkeley, CA, USA ; X. Godechot

Vacuum arc ion charge-state spectra have been measured for a wide range of metallic cathode materials. The charge-state distributions were measured using a time-of-flight diagnostic to monitor the energetic ion beam produced by a metal vapor vacuum arc ion source. Data were obtained for 48 metallic cathode elements: Li, C, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn Fe, Co, Ni, Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, In, Sn, Ba, La, Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er Yb, Hf, Ta, W, Ir, Pt, Au Pb, Bi, Th, and U. The arc was operated in a pulsed mode with pulse length 0.25 ms: arc current was 100 A throughout. The measured distributions are cataloged and compared with earlier results. Some observations about the performance of the various elements as suitable vacuum arc cathode materials are also presented

Published in:

IEEE Transactions on Plasma Science  (Volume:19 ,  Issue: 5 )