By Topic

Closed-form dynamic model of planar multilink lightweight robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. De Luca ; Roma Univ., Italy ; B. Siciliano

Closed-form equations of motion are presented for planar lightweight robot arms with multiple flexible links. The kinematic model is based on standard frame transformation matrices describing both rigid rotation and flexible displacement, under small deflection assumption. The Lagrangian approach is used to derive the dynamic model of the structure. Links are modeled as Euler-Bernoulli beams with proper clamped-mass boundary conditions. The assumed modes method is adopted in order to obtain a finite-dimensional model. Explicit equations of motion are detailed for two-link case assuming two modes of vibration for each link. The associated eigenvalue problem is discussed in relation with the problem of time-varying mass boundary conditions for the first link. The model is cast in a compact form that is linear with respect to a suitable set of constant parameters. Extensive simulation results that validate the theoretical derivation are included

Published in:

IEEE Transactions on Systems, Man, and Cybernetics  (Volume:21 ,  Issue: 4 )