By Topic

Fuzzy set representation of neural network classification boundaries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Archer, N.P. ; Fac. of Bus., McMaster Univ., Hamilton, Ont., Canada ; Wang, S.

In neural network classification techniques, the uncertainty of a new observation belonging to a particular class is difficult to express in statistical terms. On the other hand, statistical classification techniques are also poor for supplying uncertainty information for new observations. The use of fuzzy sets is a promising approach to providing imprecise class membership information. The monotonic function neural network is a tool that can be used to develop fuzzy membership functions. This research suggests that a multiarchitecture monotonic function neural network can be used for fuzzy set representation of classification boundaries in monotonic pattern recognition

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:21 ,  Issue: 4 )