By Topic

On a generalization of the Szego-Levinson recurrence and its application in lossless inverse scattering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Delsarte, P. ; Philips Res. Lab., Brussels, Belgium ; Genin, Y.

Predictor polynomials corresponding to nested Toeplitz matrices are known to be connected by the Szego-Levinson recurrence relation. A generalization of that result, where the relevant reduction process for Toeplitz matrices (of decreasing order) is defined by an elementary one-parameter linear transformation, is addressed. The descending and ascending versions of the corresponding generalized Szego-Levinson recurrence relations are discussed in detail. In particular, these relations are shown to be essentially the same as the extraction formulas for canonical Schur and Brune sections in the Dewilde-Dym (1984) recursive solution of the lossless inverse scattering problem. Some extensions of the Levinson algorithm for linear prediction and of the Schur-Cohn algorithm for polynomial stability test are presented

Published in:

Information Theory, IEEE Transactions on  (Volume:38 ,  Issue: 1 )