By Topic

Supporting service differentiation for real-time and best-effort traffic in stateless wireless ad hoc networks (SWAN)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gahng-Seop Ahn ; COMET Group, Columbia Univ., New York, NY, USA ; A. T. Campbell ; A. Veres ; Li-Hsiang Sun

We propose SWAN, a stateless network model which uses distributed control algorithms to deliver service differentiation in mobile wireless ad hoc networks in a simple, scalable and robust manner. The proposed architecture is designed to handle both real-time UDP traffic, and best effort UDP and TCP traffic without the need for the introduction and management of per-flow state information in the network. SWAN supports per-hop and end-to-end control algorithms that primarily rely on the efficient operation of TC/IP protocols. In particular, SWAN uses local rate control for best-effort traffic, and sender-based admission control for real-time UDP traffic. Explicit congestion notification (ECN) is used to dynamically regulate admitted real-time sessions in the face of network dynamics brought on by mobility or traffic overload conditions. SWAN does not require the support of a QoS-capable MAC to deliver service differentiation. Rather, real-time services are built using existing best effort wireless MAC technology. Simulation, analysis, and results from an experimental wireless testbed show that real-time applications experience low and stable delays under various multihop, traffic, and mobility conditions.

Published in:

IEEE Transactions on Mobile Computing  (Volume:1 ,  Issue: 3 )