By Topic

Capacity-achieving sequences for the erasure channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oswald, P. ; Lucent Technol. Bell Labs., Murray Hill, NJ, USA ; Shokrollahi, A.

This paper starts a systematic study of capacity-achieving (c.a.) sequences of low-density parity-check codes for the erasure channel. We introduce a class A of analytic functions and develop a procedure to obtain degree distributions for the codes. We show various properties of this class which help us to construct new distributions from old ones. We then study certain types of capacity-achieving sequences and introduce new measures for their optimality. For instance, it turns out that the right-regular sequence is c.a. in a much stronger sense than, e.g., the Tornado sequence. This also explains why numerical optimization techniques tend to favor graphs with only one degree of check nodes.

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 12 )