By Topic

Experimental study of single picosecond light pulses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. von der Linde ; Technical University of Munich, Munich, Germany

Single picosecond light pulses from a mode-locked Nd:glass laser are investigated by several methods. Their temporal structure is studied by two-photon fluorescence. The frequency spectra are measured quantitatively. The energy distribution is simultaneously investigated by three-photon fluorescence, photoelectric measurements, and quantitative studies of the contrast ratio of the two-photon fluorescence. The pulse shape is measured using a method based on the stimulated Raman effect. It is observed that the pulses are weakly asymmetric-the pulse decay is slower (exponential) than the pulse rise (Gaussian). Bandwidth-limited pulses of 4-8 ps are present in the leading part of the pulse train. Substantial frequency broadening develops as the pulse train reaches its maximum and a subpicosecond structure is formed in the trailing part of the pulse train.

Published in:

IEEE Journal of Quantum Electronics  (Volume:8 ,  Issue: 3 )