Cart (Loading....) | Create Account
Close category search window
 

Theory of intracavity optical second-harmonic generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Smith, R. ; Bell Telephone Labs, Inc., Murray Hill, NJ

An analysis of optical second-harmonic generation internal to the laser cavity is presented. It is shown that the maximum second-harmonic power generated in this way is equal to the maximum fundamental power available from the laser. Further, it is found that there exists a value of nonlinearity that optimally couples the harmonic out for all power levels of the laser. The magnitude of the nonlinearity required for optimum coupling is shown to be proportional to the linear losses at the fundamental and inversely proportional to the saturation parameter for the laser transition. For the YAlG:Nd laser at 1.06 μ using Ba2NaNb5O15as the nonlinear material, the required crystal length for optimum coupling is given bylmin{c}max{2}(cm)simeq 2.7 times 10^{2}L/fwhereLis the linear round-trip loss andfis the ratio of the fundamental power density in the nonlinear crystal to that in the laser medium. For low-loss cavities, optimum coupling can thus be achieved for crystal lengths of 1 cm or less. The use of a mirror or mirrors within the cavity, reflecting at the harmonic, is considered as a means to couple out the total harmonic in one direction. Considerations of temperature stability and the finite oscillating linewidth of the laser are shown to favor a configuration with a single harmonic mirror located on the same surface as the fundamental mirror.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:6 ,  Issue: 4 )

Date of Publication:

Apr 1970

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.