By Topic

Stabilized efficient single-frequency Nd:YAG laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Danielmeyer, H.G. ; Bell Telephone Labs., Inc., Holmdel, N.J., USA

It is shown how intracavity etalons can be optimally designed for axial mode selection and frequency stabilization of gas and crystal lasers. Relevant laser parameters, required etalon properties, and expected losses are determined. A simple frequency stabilization scheme based on birefringent etalons is described, which does not require laser modulation. Major problems associated with stable single-frequency operation of solid-state lasers are discussed. Using an optimally designed crystal quartz etalon, a Nd:YAG laser could be stabilized to 10-7in frequency and 2 percent in amplitude. The linearly polarized single frequency TEM00output was 150 mW, which compares to an unpolarized 12-mode output of 400 mW for the bare laser.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:6 ,  Issue: 2 )