Cart (Loading....) | Create Account
Close category search window

Analysis of microwave characteristics of photoconductive IC structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Darling, B.B. ; Georgia Institute of Technology, Atlanta, GA, USA

A one-dimensional analytic solution for the microwave photoresponse of an optically modulated semiconductor channel is presented. This extends the existing treatments by including the effects of nonuniform channel cross sections and conductivity, nonuniform optical illumination, field-dependent mobilities, nonzero dielectric relaxation times, arbitrary electrical and optical excitation frequencies, and full coupled bipolar carrier transport. The solution is continuous over the full range of electric field intensities and thereby describes both the saturated and nonsaturated regimes of the photocurrent. Only the low-level generation case is considered, and trapping effects and diffusion are not included. This model allows the effects of optical stimulation in many typical IC structures to be assessed from dc up through the microwave range of frequencies.

Published in:

Lightwave Technology, Journal of  (Volume:5 ,  Issue: 3 )

Date of Publication:

Mar 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.