Cart (Loading....) | Create Account
Close category search window
 

Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Henry, C.H. ; AT&T Bell Laboratories, Murray Hill, NJ, USA

A theory of spontaneous emission noise is presented based on classical electromagnetic theory. Unlike conventional theories of laser noise, this presentation is valid for open resonators. A local Langevin force is added to the wave equation to account for spontaneous emission. A general expression is found relating the diffusion coefficient of this force to the imaginary part of the dielectric function. The fields of lasers and amplifiers are found by solving the wave equation by the Green's function method. The lasing mode is a resonant state associated with a pole in Green's function. In this way, noise in lasers and amplifiers is treated by a unified approach that is valid for either gain guiding or index guiding. The Langevin rate equations for the laser are derived. The theory is illustrated with applications to traveling wave and Fabry-Perot amplifiers and Fabry-Perot lasers. Several new results are found: optical amplifier noise increases inversely with quantum efficiency; spontaneous emission into the lasing mode is enhanced in lasers with low facet reflectivities; and the linewidth of a Fabry-Perot laser with a passive section decreases as the square of the fraction of the cavity optical length that is active.

Published in:

Lightwave Technology, Journal of  (Volume:4 ,  Issue: 3 )

Date of Publication:

Mar 1986

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.