By Topic

Evaluation of polarization mode coupling coefficient from measurement of polarization mode dispersion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Polarization mode coupling coefficient is evaluated from the measurement of polarization mode dispersion as a function of fiber length in a single-mode fiber having an elliptical-core with 10-percent ellipticity. The modal dispersion measurement are carried out by the improved spatial technique based on an optical heterodyne detection at the wavelengths of 0.85 and 1.3 μm. The coupling coefficients are evaluated from the measurements to be 3.4 \times 10^{-3} and 4.6 \times 10^{-3} m-1for modal-birefringence magnitudes of 8 \times 10^{-6} and 3 \times 10^{-6} , respectively. The coupling coefficients obtained from the dispersion measurement are coincident with those evaluated from the extinction-ratio measurements. In addition, dependence of the coupling coefficient on propagation constant difference between the two orthogonally polarized HE11modes is investigated based on Lorentzian power spectrum model.

Published in:

Lightwave Technology, Journal of  (Volume:3 ,  Issue: 4 )