Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Receiver design for high-speed optical-fiber systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Muoi, T. ; TRW Electrooptics Research Center, El Segundo, CA., USA

The technology of optical-fiber systems is advancing rapidly. Parallel to the development of long-haul telecommunication systems in the gigabits per second data rates operating in the long-wavelength region is the wide penetration of optical-fiber systems in local area networks, video trunking and distribution, sensors, etc. These diversified applications impose different and often conflicting constraints on the optical receiver. This paper re-examines the optical receiver design in view of these different requirements, namely, high receiver sensitivity, wide dynamic range, transparent to the operating bit rate, unrestricted data format, and fast acquisition time. Design tradeoffs between conflicting receiver requirements are considered in detail. In particular, the sensitivity of high-capacity long-wavelength transmission systems is emphasized. The state-of-the-art performance of photodetectors and low-noise amplifiers is discussed. We show that dark current of avalanche photodiodes (APD's) is the main factor limiting the sensitivity of long-wavelength optical receivers. In addition, as an example, we report on the design and experimental performance of a hybridized low-noise optical receiver amplifier capable of more than 2-Gbits/s operation. The input noise spectral density achieved is 9 pA/ \sqrt {Hz} with a noise corner frequency of 920 MHz, corresponding to an equivalent noise resistance of 120 Ω.

Published in:

Lightwave Technology, Journal of  (Volume:2 ,  Issue: 3 )