By Topic

Gain nonlinearities in semiconductor lasers: Theory and application to distributed feedback lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Agrawal, G.P. ; AT&T Bell Laboratories, Murray Hill, NJ

The gain spectrum in semiconductor lasers is affected by the intensity-dependent nonlinear effects taking place due to a finite intraband relaxation time of charge carriers. We obtain an analytic expression for the nonlinear gain in multimode semiconductor lasers using the density-matrix formalism. In general, the nonlinear gain is found to consist of the symmetric and asymmetric components. The asymmetry does not have its origin in the carrier-induced index change, but is related to details of the gain spectrum. The general expression for the nonlinear gain is used to discuss the range of single-longitudinal-mode operation of distributed feedback lasers. It is also used to obtain an analytic expression for the self-saturation coefficient and to compare the predicted value to the experimental value for both GaAs and InGaAsP lasers. The agreement between the theoretical and the experimental values supports the hypothesis that spectral hole burning is the dominant mechanism for the gain nonlinearities in semiconductor lasers.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:23 ,  Issue: 6 )