Cart (Loading....) | Create Account
Close category search window

1.5 µm GaInAsP traveling-wave semiconductor laser amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Saitoh, Tadashi ; NTT Electrical Communications Laboratories, Tokyo, Japan ; Mukai, Takaaki

This paper presents a theoretical and experimental study in terms of small-signal gain, signal gain saturation, and noise characteristics of a 1.5 μm GaInAsP traveling-wave amplifier (TWA), realized through the application of SiOxfilm antireflection coatings. This TWA, having a residual facet reflectivity of 0.04 percent, exhibits a wide, flat signal gain spectrum and a saturation output power of +7 dBm at a 20 dB signal gain. The TWA also has a noise figure of 5.2 dB, which is the smallest value reported for semiconductor laser amplifiers. The experimental results are confirmed to be in good agreement with the theoretical predictions based on the multimode traveling-wave rate equations in conjunction with the photon statistic master equation analysis, which takes into account the amplifier material and device structural parameters. Signal gain undulation, saturation output power, and noise figure are also theoretically evaluated as functions of the facet reflectivity. The superior performance of the TWA demonstrates that the device is favorable for use in linear optical repeaters in fiber transmission systems.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:23 ,  Issue: 6 )

Date of Publication:

Jun 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.