By Topic

Nonlinear slab-guided waves in non-Kerr-like media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Stegeman, George I. ; Optical Sciences Center and Arizona Research Laboratories, Univ. of Arizona, Tucson, AZ, USA ; Wright, E.M. ; Seaton, C. ; Moloney, J.V.
more authors

Guided waves with unique, power-dependent properties arise when one or more of the media bounding a guiding film exhibits an intensity-dependent refractive index. Previous theoretical work on this problem has been based formalism-limited to Kerr-type nonlinear media in which the change in refractive index is quadratic in the optical field. In this paper, a formalism recently reported by Langbein et al. is used to investigate nonlinear guided wave solutions in more realistic material systems. It is shown numerically that saturation of the optically induced change in the refractive index can dramatically alter, and in some cases eliminate, the more interesting power-dependent features of the solutions. Nonlinear wave solutions are also investigated for a larger class of media characterized by refractive indexes which depend on the optical field raised to some arbitrary power.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:22 ,  Issue: 6 )