By Topic

Reflection noise in index-guided InGaAsP lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Temkin, Henryk ; AT&T Bell Laboratories, Murray Hill, NJ, USA ; Olsson, N.A. ; Abeles, J.H. ; Logan, Ralph A.
more authors

We report a detailed study of the excess noise induced in index-guided InGaAsP laser structures by reflection feedback. The phenomena of high-frequency noise (1-5 GHz), low-frequency noise (< 100 MHz), and intensity fluctuations are shown to have a common physical origin in the unusual instability of the coupled laser-external cavity system. After a randomly occurring light intensity drop, the light output recovers in 10-15 steps, each corresponding to an external cavity roundtrip (high-frequency noise); the total recovery time corresponds to the low-frequency noise. The instability, and the subsequent noise, can be suppressed under conditions of very strong feedback such as obtained for lasers with anti-reflection-coated facets. The reflection noise characteristics are shown to be largely independent of the laser structure and structure modifications such as distributed feedback.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:22 ,  Issue: 2 )