Cart (Loading....) | Create Account
Close category search window

Spatial and temporal phase coexistence in optical bistability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haug, H. ; Institut für Theoretische Physik der Universität Frankfurt, Frankfurt-Main, Federal Republic of Germany ; Koch, S.

Optical bistability is a first-order nonequilibrium phase transition, which is characterized by the spatial or temporal coexistence of two phases. In systems with resonators this phase coexistence can be realized in the form of transverse patterns of high and low intensity values, whereas in a resonatorless optical bistability the phase coexistence becomes manifest in a longitudinal intensity variation. In systems in which strong diffusion of the elementary excitations suppresses spatial phase coexistence, random fluctuations establish at least in principal a temporal phase coexistence by stochastic switching between the two bistable states.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:21 ,  Issue: 9 )

Date of Publication:

Sep 1985

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.