By Topic

Design, optimization and purity of permanent magnet helical wigglers for free-electron lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Diament, P. ; Columbia University, New York, NY, USA

A helical wiggler field can be produced inside a cylindrical waveguide by properly distributing and orienting an array of permanent magnets within an annular shell surrounding the waveguide. The design and optimization of such wigglers is considered herein, along with assessments of the strength and spectral purity achievable under practical constraints of equally and uniformly magnetized rare-earth cobalt magnets. Starting with the optimum continuum magnetization, a design is derived that differs from Halbach's primarily in that it includes axially directed components of magnetization. A comparison of the two approaches to helical wiggler design is made in terms of the field strength and purity each can achieve under similar constraints. The optimized design is shown to generate stronger and purer helical wiggler fields than Halbach's version for typical parameters. A modified design that uses many small magnets and does not fill the annular space is suggested and evaluated.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:21 ,  Issue: 7 )