Cart (Loading....) | Create Account
Close category search window
 

Low-threshold distributed feedback lasers fabricated on material grown completely by LP-MOCVD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Razeghi, M. ; Laboratoire Central de Recherches, Thomson-CSF, Orsay Cedex, France ; Blondeau, R. ; Krakowski, Michel ; Bouley, J.-C.
more authors

GaInAsP-InP distributed feedback (DFB) lasers emitting at 1.57 μm have been fabricated on material grown completely by low-pressure metalorganic chemical vapor deposition (LP-MOCVD). The CW threshold current of 60 mA and an output power of 6 mW per facet at room temperature have been obtained. The lasing wavelength λLunder CW operation showed a temperature coefficient (d_{lambdaL}/dT) of 0.9 Å/°C for this DFB laser over the range of10-90degC. A stable single longitudinal mode was maintained under high speed pulse modulation up to 500 ps, and sinusoidal modulation at 1 Ghz.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:21 ,  Issue: 6 )

Date of Publication:

Jun 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.