By Topic

Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Asada, M. ; Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan ; Suematsu, Y.

The density-matrix theory of semiconductor lasers with relaxation broadening model is finally established by introducing theoretical dipole moment into previously developed treatments. The dipole moment is given theoretically by the k . p method and is calculated for various semiconductor materials. As a result, gain and gain-suppression for a variety of crystals covering wide wavelength region are calculated. It is found that the linear gain is larger for longer wavelength lasers and that the gain-suppression is much larger for longer wavelength lasers, which results in that single-mode operation is more stable in long-wavelength lasers than in shorter-wavelength lasers, in good agreement with the experiments.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:21 ,  Issue: 5 )