By Topic

An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Demokan, M. ; King''s College, Strand, London, England and Imperial College, London, England ; Nacaroglu, A.

A theoretical analysis of gain-switched semiconductor lasers is described. Results of the numerical solution of the coupled rate equations for photon and electron densities are presented, along with analytical expressions which have been derived by using certain approximations to solve these nonlinear differential equations. The two sets of results are seen to be in good agreement. The design requirements to be met in order to use the pulse-code-modulated output in an optical communications system are discussed. It is shown theoretically that bit rates, of the order of 7 Gbits/s without time-division multiplexing, and 35 Gbits/s with multiplexing can be obtained.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:20 ,  Issue: 9 )