Cart (Loading....) | Create Account
Close category search window

A self-consistent model of stripe geometry lasers based on the beam propagation method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Meissner, P. ; Heinrich-Hertz-Institut fuer Nachrichtentechnik, Berlin, Germany ; Patzak, E. ; Yevick, D.

Using the propagating beam technique to solve Maxwell's equations together with a shooting method solution to the carrier diffusion equation, we develop an iterative, self-consistent procedure for determining the properties of stripe geometry lasers. This procedure allows us to calculate the power-current characteristics, differential quantum efficiencies, gain distributions and near and far fields over a wide range of currents at and above threshold. Far above threshold, we find, as expected, that symmetric and antisymmetric transverse modes can lase simultaneously.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:20 ,  Issue: 8 )

Date of Publication:

August 1984

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.