By Topic

Analysis and design of coupled-cavity lasers - Part II: Transient analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Coldren ; AT&T Bell Labs., Holmdel, NJ, USA ; T. Koch

The analysis and design of two-section and multisection coupled-cavity lasers is treated in two parts. In this second part, a numerical analysis of the transient behavior is given. The first part presented a formalism to derive wavelength-dependent threshold gains and device design criteria based thereon. Part II consists of two numerical approaches for the study of spurious mode suppression and general device behavior under pulsed current excitation. The first employs an approximate but useful multimode rate equation which incorporates all the coupled-cavity characteristics into the wavelength-dependent threshold gains derived in Part I. The importance of the design formulas in Part I is illustrated by showing the time-dependent spurious mode suppression as various device parameters are changed. Examples are given showing simulated AM and frequency shift keying (FSK) operation. In the second more rigorous approach, each of the two cavities is spatially subdivided into fine segments, and traveling wave rate-equations relate the complex amplitudes of the forward and backward propagating waves in each segment. This approach is not limited to certain regimes of device operation, but generally supports the simpler approach in most cases of interest. The conclusion is drawn that for realizable device geometries, with the proper device geometries and electrical device control, excellent spurious mode suppression (≳ 25 dB) should be readily attainable with coupled-cavity lasers.

Published in:

IEEE Journal of Quantum Electronics  (Volume:20 ,  Issue: 6 )