By Topic

Theory of noise in semiconductor lasers in the presence of optical feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spano, P. ; Fondazione UGO Bordoni, Rome, Italy ; Piazzolla, S. ; Tamburrini, M.

We derive analytical expressions for the power spectral densities of intensity and frequency noise of single mode semiconductor lasers in the presence of an optical feedback. By explicitly taking into account the spontaneous emission processes into the laser mode, we obtain a behavior which, at high frequencies significantly differs from the usual one, and is in good agreement with recent experimental results. In particular, we are able to show in which way the intensity and frequency noise, besides being influenced by the external cavity length, are affected by the presence of the well known resonant peaks in the noise spectra of the solitary laser and how a substantial lowering and flattening in the noise spectra can be obtained with external cavity round trip times shorter than the inverse of the peak resonant frequency. We also present experimental results in good agreement with the theoretical ones.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:20 ,  Issue: 4 )