Cart (Loading....) | Create Account
Close category search window

Single-particle theory of the free-electron laser in a moving frame

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stenholm, S. ; University of Helsinki, Finland ; Bambini, A.

We give a summary of the theory of a single electron involved in free-electron laser (FEL) operation. We use the method of transformation to a predetermined moving frame where the wiggler-laser scattering process is elastic. In this paper, we discuss the classical and quantum dynamics of such an electron and evaluate perturbatively the lowest order FEL behavior from the classical pendulum equation. The presentation is tutorial throughout and stresses analytic results and physically significant dimensionless parameters. No results are included for the dynamic evolution of the light during the laser action.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 8 )

Date of Publication:

Aug 1981

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.