Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A capacitor-charging power supply using a series-resonant topology, constant on-time/variable frequency control, and zero-current switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lippincott, A.C. ; Hewlett-Packard Corp., Colorado Springs, CO, USA ; Nelms, R.M.

A power supply specifically designed for capacitor-charging applications that uses a series-resonant circuit topology, a constant on-time/variable frequency control scheme, and zero-current switching techniques has been developed. The performance of this capacitor-charging power supply (CCPS) has been evaluated in the laboratory by charging several values of load capacitance at various repetition rates. The CCPS has charged a 1 μF capacitor from 0 to 1500 V DC in 750 μs, exhibiting a charging power of 1500 J/s. This operation has been repeated at a rate of 800 charges per second, which corresponds to an average power output of 900 W. A 10 μF capacitor has been charged from 0-1500 V DC in 8 ms. These results indicate that this design is feasible for use in capacitor-charging applications

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:38 ,  Issue: 6 )