By Topic

Characteristics of the pumping pulse and the output laser pulse for a Cu/CuCl double pulse laser

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Characteristics of the pumping discharge pulse and laser pulse in a Cu/CuCl double pulse laser have been measured as a function of time delay, buffer gas pressure, and tube temperature. We have found that for otherwise fixed discharge conditions, pumping rates decrease as these quantities are increased. The shape of the laser pulse as a function of time delay is shown to be dependent on the rate of current rise of the pumping pulse. The length of time required by the pumping pulse to achieve threshold is found to be a function of time delay, buffer gas pressure, and tube temperature. The implications of this behavior for the role of metastable copper and its mode of relaxation are discussed.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 6 )