Cart (Loading....) | Create Account
Close category search window
 

Receiver performance evaluation of various digital optical modulation-demodulation systems in the 0.5-10 µm wavelength region

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yamamoto, Y. ; NTT Musashino Electrical Communication Lab., Tokyo, Japan

Error rate characteristics of various digital optical modulation-demodulation schemes are studied. The main concern is whether we can improve receiving power levels to achieve a prescribed error rate by employing a coherent optical transmission system in place of the presently available amplitude-shift-keyed (ASK) baseband direct detection system. The receiving power level reduction in various modulation-demodulation schemes is calculated by taking into account the optical carrier wavelength, data rate, photodetector performance, local oscillator power level, and number of levels in multilevel codes. The phase-shift-keyed (PSK) homodyne detection system requires the least receiving power. The improvement in the receiving power level compared to the conventional ASK baseband direct detection system is expected to be 16-22 dB at the carrier wavelength oflambda_{c} = 0.5-3 mum, 31-36 dB atlambda_{c} = 3-5 mum, and 35-40 dB atlambda_{c} = 5-10 mum.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 11 )

Date of Publication:

Nov 1980

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.