By Topic

A stimulated inelastic tunneling theory of negative differential resistance in metal-insulator-metal diodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Drury, D. ; Sandia Laboratories, Albuquerque, NM, USA ; Ishii, T.K.

The negative differential resistance that has been observed in the current-voltage characteristics of some metal-insulator-metal (MIM) diodes is investigated theoretically. A refined theory, involving the stimulated inelastic tunneling of electrons through the diode's insulating layer, is developed to explain the negative resistance. Electrons can tunnel inelastically through the insulating layer by emitting surface plasmons. It is shown that if the diode structure forms a resonant cavity of the proper frequency and sufficiently highQ-factor, the effect of emitted plasmons can be contained long enough to stimulate additional inelastic tunneling. Second order perturbation theory is used to derive an equation for the current-voltage characteristic of an MIM diode exhibiting negative differential resistance. Numerical calculations show that aQ-factor of10^{2}-10^{4}is required to match the theoretical results to published current-voltage characteristics of MIM diodes with negative differential resistance.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:16 ,  Issue: 1 )