By Topic

A cost minimization approach to edge detection using simulated annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. L. Tan ; Kodak Res. Lab., Rochester, NY, USA ; S. B. Gelfand ; E. J. Delp

The authors cast edge detection as a problem in cost minimization. This is achieved by the formulation of a cost function that evaluates the quality of edge configurations. The function is a linear sum of weighted cost factors. The cost factors capture desirable characteristics of edges such as accuracy in localization, thinness, and continuity. Edges are detected by finding the edge configurations that minimize the cost function. The authors give a mathematical description of edges and analyze the cost function in terms of the characteristics of the edges in minimum cost configurations. Through the analysis, guidelines are provided on the choice of weights to achieve certain characteristics of the detected edges. The cost function is minimized by the simulated annealing method. A set of strategies is presented for generating candidate states and to devise a suitable temperature schedule

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 1 )