Cart (Loading....) | Create Account
Close category search window
 

Transmission characteristics of long spliced graded-index optical fibers at 1.27µm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kitayama, K. ; NTT Public Corp., Ibaaraki-ken, Japan ; Seikai, S. ; Kato, Y. ; Uchida, Naoya
more authors

Transmission characteristics of graded-index fibers at 1.27 μm are investigated. Bandwidth measurements are made in the frequency domain by using a CW GaInAsP laser diode modulated by a sinusoidal signal. For a germanium pbosphosilicate fiber, the optimum index profile at 1.27 μm is determined as 1.98. It is shown that optimum profile at 0.83 μm is 2.08 and there exists a large profile dispersion effect: for example, the experimental maximum 3-dB bandwidth at 1.27 μm decreases to one-third at 0.83 μm. Length dependence of bandwidth is investigated for 48 km long spliced graded-index fibers at 1.27 μm. It is verified that using a simplified transmission model in which mode conversion is assumed at splicing points, the bandwidths of long spliced fibers are predicted with satisfactory accuracy in terms of unit fiber transfer functions.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:15 ,  Issue: 7 )

Date of Publication:

Jul 1979

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.