By Topic

Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
H. Ando ; Nippon Telegraph and Telephone Public Corporation, Tokyo, Japan ; H. Kanbe ; T. Kimura ; T. Yamaoka
more authors

Dark current, quantum efficiency, multiplication noise, and pulse response of germanium avalanche photodiodes with n+-p junction were studied to find an optimum structure. The dark current can be separated by graphical means into a leakage current component and a multiplied component which flows through the junction. The dark current components are also evaluated by using diodes with various diameters. The quantum efficiency and the multiplication noise are shown to be strongly affected by the n+ layer thickness. An n+ layer thickness optimized for signal-to-noise ratio is estimated from experimental and calculated results, using a figure of merit for avalanche photodiodes. The response waveform for mode-locked Nd:YAG laser shows a rise time of 100 ps and a half pulsewidth of less than 200 ps.

Published in:

IEEE Journal of Quantum Electronics  (Volume:14 ,  Issue: 11 )