By Topic

Observations of self-focusing in stripe geometry semiconductor lasers and the development of a comprehensive model of their operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kirkby, P.A. ; Standard Telecommunication Laboratories Ltd., Essex, England ; Goodwin, A.R. ; Thompson, G.H.B. ; Selway, P.R.

Experimental measurements of the optical-beam parameters of conventional oxide-insulated GaAs stripe-geometry lasers as a function of stripe width have shown a marked difference in the waveguide mechanism of narrow-stripe ( \simeq 10 \mu m) and wide-stripe ( > 20 \mu m) lasers. The optical wave of narrow-stripe lasers is guided by the previously reported gain-guiding mechanism. The optical wave of wide-stripe lasers is found to be guided by changes in the real part of the dielectric constant that are caused by a dip in carrier concentration along the axis of the lasing filament. This self-focused guiding has been predicted theoretically. These experimental results strongly support the hypothesis that in all cases the waveguides are formed predominantly by the naturally occurring variations in carrier concentration beneath the stripe. A new and fairly comprehensive mathematical model has been developed based on this assumption. The model predicts the carrier concentration, resultant gain, and dielectric constant profiles together with the optical-beam parameters and light/current characteristics of stripe-geometry lasers. The model is applicable over a wide range of stripe widths and device structures. The results are compared with experiment over the range of stripe widths from 10-20 \mu m and found in reasonable agreement. The effects of narrowing the stripe width below 10 μm are calculated and found to be in qualitative agreement with recently published experimental results. In particular the light-output power at which a predicted "kink" in the light/current characteristic occurs is found to increase rapidly as the stripe width reduces.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 8 )