By Topic

Analysis of grating-coupled radiation in GaAs:GaAlAs lasers and waveguides - I

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Streifer, William ; Xerox Palo Alto Research Center, Palo Alto, CA ; Scifres, Don R. ; Burnham, R.

Grating-coupled radiation in GaAs:GaAlAs lasers and waveguides is analyzed. A general formulation is developed for arbitrary-shaped gratings which need not be small in size. Two methods are used to solve the resulting equations in the case of rectangular-shaped gratings. The first is a perturbation technique and the second is iterative in nature. The iterative procedure converges to a numerical exact solution in many cases of practical interest and indicates that the perturbation results are quite accurate. Curves are presented for radiated power from traveling waves as a function of grating tooth height, tooth width, refractive index, waveguide thickness, and period for rectangular gratings in heterostructure waveguiding geometries. It is shown that radiation is not a monotonically increasing function of tooth height, but rather maxima occur when the teeth are half the optical wavelength in the material. Also, in particular geometries with an air:GaAs grating interface, radiated power of a mode can exceed 100 cm-1.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 7 )