Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Application of molecular-beam epitaxial layers to heterostructure lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Casey, H.C. ; Bell Laboratories, Murray Hill, NJ ; Cho, A.Y. ; Barnes, P.A.

GaAs-AlxGa1-xAs double-heterostructure (DH) lasers with Si-doped n-type active layers have been prepared by molecular-beam epitaxy (MBE) and the laser properties evaluated. With 0.2-μm-thick active layers and 300-μm cavity lengths, typical room-temperature threshold current densities Jthof 5.0 \times 10^{3} A/cm2and best values of 2.5 \times 10^{3} A/cm2have been obtained. Stripe-geometry devices were run CW up to 9°C. Photoluminescence (PL) studies of single layers grown with the donors Si, Ge, and Sn show that the luminescent intensity for MBE n-type layers depends on the substrate temperature during growth. The PL intensity for Sn-doped MBE layers was greater than for high-quality Sn-doped liquid-phase-epitaxial layers.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:11 ,  Issue: 7 )