By Topic

Amplified spontaneous emission and signal amplification in dye-laser systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
U. Ganiel ; Weizmann Institute of Science, Rehovot, Israel ; A. Hardy ; G. Neumann ; D. Treves

Transversely pumped dye-laser systems are investigated theoretically and experimentally. A set of coupled rate equations for the excited-state population densities and for the photon fluxes in both directions, at all wavelengths, is presented. Both the temporal and spatial dependence of these quantities are accounted for. The equations are solved numerically for a variety of practical situations, and analytical approximations for some limiting cases are discussed. The results describe the dependence of the amplified-spontaneous-emission (ASE) output flux on pumping rate, the spectral narrowing process, and the effects of gain saturation. It is found that under practical laboratory conditions the gain of such dye systems saturates rapidly. Consequently, at high pumping rates the output varies linearly with pump intensity, and the conversion efficiency from pump to ASE photons approaches unity. The performance of dyedaser amplifiers is described by the same set of equations, and the gain characteristics of such systems are analyzed as a function of input signal intensity and pumping rate. The theoretical calculations are compared with the results of a set of experiments, and good agreement is found. The operation characteristics of a dye-laser amplifier are evaluated and utilized in the design of a narrow-band oscillator-amplifier system.

Published in:

IEEE Journal of Quantum Electronics  (Volume:11 ,  Issue: 11 )