By Topic

Computer simulation of a carbon-deposition plasma in CH4

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Rhallabi ; Lab. des Plasmas et des Couches Minces, Inst. de Phys. et Chimie des Materiaux, Nantes, France ; Y. Catherine

A transport and reaction model of a low-pressure, high-frequency (13.56 MHz) CH4 plasma used for diamondlike carbon (a-C:H) deposition was developed. The model includes reactions among four molecular species (CH4, C2 H6, C2H4, and H2), five radicals and atom (CH3, CH2, CH, C2H5, and H), and four ions (CH4+ , CH3+, CH5+, and C 2H5+). It also accounts for the influence of the sticking coefficient of species at the walls. Calculated values of the dissociation degree for several flow rates are in good agreement with experimental measurements made by quadrupole mass spectroscopy. A simple surface-model based on the hydrogen coverage of surface and ion flux and energy at the substrate surface was established. This model permitted the calculation of the deposition rate on the powered electrode as a function of the power applied to this electrode. Good agreement between experimental and calculated growth rates was obtained when CH3, C2H5, and CH2 were assumed to participate in film formation, and when hydrogen removal by ion bombardment with variable energy as a function of the power was included in the model

Published in:

IEEE Transactions on Plasma Science  (Volume:19 ,  Issue: 2 )