By Topic

Molecular saturation and the criterion for passive Q switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oppenheim, U. ; Technion-Israel Institute of Technology, Haifa, Israel ; Kaufman, Y.

Rotational hole burning is known to be the main factor that determines saturation in molecular absorbers during a short pulse. Experimental results are presented that suggest that pulse transmission measurements, as opposed to CW transmission measurements, must be used in order to determine if a gas can be used as a saturable absorber in passive Q switching. Rate equations are developed for a five-state model to explain saturation in SF6. This model is found to predict CW and pulse transmission through SF6at various lines of the 10.4-μm band of the CO2laser. A simplified model is developed for pulse transmission through saturable gases and is solved analytically for the peak of the pulse. It is found that the absorption coefficient of the absorber at the peak of the pulse is given by a simple expression, which leads directly to a new criterion for passive Q switching. An experimental test of this criterion is carried out for several mixtures of SF6and He which act as saturable absorbers under varying conditions of irradiation. It is found that the transition from CW to pulsed operation is very sharp and occurs at a well-defined value of radiation intensity.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:10 ,  Issue: 7 )