Cart (Loading....) | Create Account
Close category search window

A hybrid Monte Carlo/fluid model of RF plasmas in a SiH4/H2 mixture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sato, N. ; Electr. Eng. Lab., Iwate Univ., Morioka, Japan ; Tagashira, Hiroaki

A fluid model for simulating the capacitively coupled steady RF plasmas in a monosilane-hydrogen mixture under plasma-processing conditions is developed. This model includes Monte Carlo treatment for electron transport properties in the mixture. The Monte Carlo simulation shows that the electron transport phenomena in the nonuniform RF field of 10 MHz are not in equilibrium with the local electric field. The nonequilibrium transport properties are incorporated in the fluid model (hybrid model) by modifying the equilibrium values of the swarm parameters using data from the Monte Carlo simulation. Using this model, the spatiotemporal variations of the charged species and the electric field in the sheath region of the RF plasma are calculated. For obtaining the steady RF plasma structure, ion-induced slow processes such as recombination and diffusion of ions are calculated by combining the hybrid model with rate equations for ions. Using the calculated steady RF plasma structure, a preliminary calculation of the silyl (SiH 3) and hydrogen (H) radical distributions caused by the generation, diffusion, and reaction of the radicals are carried out. The effect of sticking on the profile of the radical distribution is presented

Published in:

Plasma Science, IEEE Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Apr 1991

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.