We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Decentralized control of cooperative robotic vehicles: theory and application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Feddema, J.T. ; Sandia Nat. Labs., Albuquerque, NM, USA ; Lewis, C. ; Schoenwald, D.A.

Describes how decentralized control theory can be used to analyze the control of multiple cooperative robotic vehicles. Models of cooperation are discussed and related to the input/output reachability, structural observability, and controllability of the entire system. Whereas decentralized control research in the past has concentrated on using decentralized controllers to partition complex physically interconnected systems, this work uses decentralized methods to connect otherwise independent nontouching robotic vehicles so that they behave in a stable, coordinated fashion. A vector Liapunov method is used to prove stability of two examples: the controlled motion of multiple vehicles along a line and the controlled motion of multiple vehicles in formation. Also presented are three applications of this theory: controlling a formation, guarding a perimeter, and surrounding a facility.

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:18 ,  Issue: 5 )