By Topic

Electron microscopy on high-coercive-force Co-Cr composite films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daval, J. ; Centre d''Etude Nucleaires de Grenoble, Grenoble, France. ; Randet, D.

Electron microscopy was used to analyze the crystallographic and magnetic structures of high-coercive-force Co-Cr composite films. The chromium sublayer appears to give high coercive forces by causing the growth of cobalt in the hexagonal phase with a relatively narrow distribution of grain sizes. Magnetization reversal was examined by Lorentz microscopy of films with coercive fields up to H_{c} = 900 Oe. It proceeds by nucleation and extension of magnetostatically coupled domains. The progressive limitation of these extensions as the coercive force increases illustrates the connection between the magnetostatic coupling, the coercive force, and the squareness of the hysteresis loop. Lorentz microscopy was also used to investigate a recorded transition between NRZ 1 and 0 states and showed a saw-toothed structure, characteristic of a magnetization in the plane of the film.

Published in:

Magnetics, IEEE Transactions on  (Volume:6 ,  Issue: 4 )