By Topic

Noise in high performance thin-film longitudinal magnetic recording media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Belk, Nathan R. ; Magnetic Peripherals, Inc., Minneapolis, MN. ; George, Peter K. ; Mowry, Greg S.

The problem of noise in thin-film longitudinal media is analyzed experimentally and theoretically. The physical mechanism for the noise is shown to be fluctuations in the geometry of the zig-zag transitions separating bit cells. The shifted-transition noise model is introduced as a means of quantifying the noise processes. Spatial, spectral, and autocorrelation properties are introduced. A calculation of the RMS noise voltage yields the characteristic noise versus density curves found experimentally, and clarifies their interpretation with respect to the signal-to-noise ratio. The corresponding experimental data for several plated and sputtered media are presented and analyzed in the light of the model predictions.

Published in:

Magnetics, IEEE Transactions on  (Volume:21 ,  Issue: 5 )