Cart (Loading....) | Create Account
Close category search window
 

Annealing kinetics of thin permalloy films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Butherus, A.D. ; Bell Laboratories, Murray Hill, N.J. ; Nakahara, S.

Low-temperature (250-397°C) annealing was found to cause a large decrease in the resistivity of radio-frequency sputter-deposited thin (≤ 500 Å) Permalloy films. A transmission electron microscope was used to investigate a probable microstructural change occurring during the annealing. It was found that the low-temperature annealing induced considerable grain growth in these films. Furthermore, an electron diffraction analysis has shown that this grain growth was accompanied by the formation of the ordered phase (Ni3Fe). The use of dark-field imaging revealed that the small ordered region appears to be formed around the disordered regions via a grain-boundary diffusion mechanism. The observed resistivity decrease was proposed to occur by the structural ordering as a result of the annealing. The measured activation energy for this process was 0.72 eV. This activation energy appears to be associated with the grain boundary migration of excess vacancies trapped during film formation.

Published in:

Magnetics, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

Jul 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.