Cart (Loading....) | Create Account
Close category search window
 

Normal zone detectors for a large number of inductively coupled coils

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Owen, Earle W. ; Lawrence Livermore National Laboratory, Livermore, CA ; Shimer, Daniel W.

In order to protect a set of inductively coupled superconducting magnets, it is necessary to locate and measure normal zone voltages that are small compared with the mutual and self-induced voltages. The method described in this paper uses two sets of voltage measurements to locate and measure one or more normal zones in any number of coupled coils. One set of voltages is the outputs of bridges that balance out the self-induced voltages. The other set of voltages can be the voltages across the coils, although alternatives are possible. The two sets of equations form a single combined set of equations. Each normal zone location or combination of normal zones has a set of these combined equations associated with it. It is demonstrated that the normal zone can be located and the correct set chosen, allowing determination of the size of the normal zone. Only a few operations take place in a working detector: multiplication of a constant, addition, and simple decision making. In many cases the detector for each coil, although weakly linked to the other detectors, can be considered to be independent. The effect on accuracy of changes in the system parameters is discussed.

Published in:

Magnetics, IEEE Transactions on  (Volume:20 ,  Issue: 4 )

Date of Publication:

Jul 1984

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.