By Topic

Switching properties of a partially set square-loop ferrite core

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
V. Hesterman ; Stanford Research Institute, Menlo Park, CA, USA

The switching properties of a partially set square-loop ferrite core depend not only upon the initial flux level, but also upon how that flux level was attained, and are therefore complex. Experimental results that describe some of this history dependence are presented. A thin-ring core ( OD/ID = 1.10 ) was partially set by switching it from negative remanence ( -\phi_{r} ) to some flux level (φps) using a rectangular PARTIAL SET pulse of duration Tps. This pulse was followed by a rectangular TEST pulse having a variable amplitude F to determine the properties of switching from each partially set state. Three types of data were taken during the TEST pulse: 1) switching voltage waveforms [i.e., \phi(t) ] for a given φpsand F , with Tpsas a parameter, 2) peak switching voltage vs. F [i.e., \phi_{p}(F) ] curves for a given φps, with Tps, as a parameter, and 3) \dot{\phi}_{p}(F) curves for a given Tps, with φpsas a parameter. The \dot{\phi}(t) waveforms changed considerably as Tpswas varied, even though F and φpswere constant (e.g., peaking time was reduced from 0.5 μs to less than 0.1 μs as Tpswas reduced from 100 μs to 5 ns). The slope and threshold of the \dot{\phi}_{p}(F) curves were lowered considerably as φpswas increased from -\phi_{r} to -0.36\phi_{r} (e.g., the slope was reduced by 40 percent and the threshold was reduced by 14 percent for T_{ps} = 0.9 \mu s). Presently used switching models are not able to account for these effects. Related phenomena also occur when the core is switched from -\phi_{r} with an MMF which is not constant throughout the entire switching process. The experimental results are discussed relative to the future development of an appropriate switching model.

Published in:

IEEE Transactions on Magnetics  (Volume:1 ,  Issue: 4 )