By Topic

Mutually constrained partial differential and integral equations for an exterior field problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Tarasiewicz ; Technical University of Poznań, Poznań, Poland ; J. Poltz

A new implementation of the mutually constrained partial differential and integral equation method for the exterior 2-dimensional field problem is described. It is shown, that the method is applicable to exterior problems in an inhomogeneous medium. The inhomogeneity is considered in the finite element procedure and in boundary element method, where an adequate Green's function is applied. The temperature distribution around a three-cable system is then computed as an illustration. The eddy-current losses in the cable sheaths are calculated using the Fredholm integral equation of the second kind.

Published in:

IEEE Transactions on Magnetics  (Volume:19 ,  Issue: 6 )