Cart (Loading....) | Create Account
Close category search window
 

Identification of transfer functions with time delay and its application to cable fault location

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pintelon, R. ; Dept. ELEC, Vrije Univ. Brussel, Belgium ; Van Biesen, L.

A Gaussian frequency-domain maximum likelihood estimator (MLE) to estimate the transfer function of linear continuous-time systems with time delay is presented. The stochastic framework is an errors-in-variables model, which means that the input as well as the output of the system is disturbed with noise. The estimator is applied to a practical measurement problem, namely the estimation of the location of discontinuities, e.g. faults in electrical cables from a reflectogram. Experimental results for coaxial lines show that it is possible to identify simultaneously the location of the discontinuity and a rational approximation of the generator mismatch, the fault impedance, and some of the cable parameters

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:39 ,  Issue: 3 )

Date of Publication:

Jun 1990

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.