By Topic

Conductor design for superfluid Helium II

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. Parmer ; General Dynamics Convair Division, San Diego, CA

This paper derives some design formulas and charts for a high-field (12 Tesla) application using Nb43Ti25Ta alloy superconductor. This material is selected because of its large critical current (Jc= 71,000 A/cm2) at 12 Tesla and 1.8K. Its ductility is beneficial to manufacturing processes and accommodating of the operating condition under stress. A coil packing factor of 70% and an insulation void fraction of 35% are assumed. These are nominal values which, after analysis, leave adequate turn-to-turn space for insulation bearing area, Helium II volume, and voltage standoff. The stabilizer is oxygen-free, high-purity copper in the full-hard condition, ρ = 7.17 ×, wherein the magnetoresistivity at 12 Tesla accounts for 69% of the total. Basing a trial conductor on these assumptions will produce a design very close to optimum. Further refinement would be an iterative process whereby one checks the design against all constraints using the fundamental engineering formulas and makes parametric adjustments as necessary.

Published in:

IEEE Transactions on Magnetics  (Volume:19 ,  Issue: 3 )